Chapter 3. Understanding Quadrilaterals

Question 1

A quadrilateral has three acute angles, each measures 80°. What is the measure of the fourth angle?

Solution:

Sum of the four angles of a quadrilateral = 360°

$$80^{\circ} + 80^{\circ} + 80^{\circ} + 4$$
th angle = 360°

Question 2

In a quadrilateral ABCD, the measure of the three angles A, B and C of the quadrilateral are 110°, 70° and 80° respectively. Find the measure of the third angle.

Solution:

The measure of A = 110°

The measure of $B = 70^{\circ}$

The measure of C = 80°

The sum of the four angles of the quadrilateral ABCD = $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$.

$$\angle A + \angle B + \angle C = 110^{\circ} + 70^{\circ} + 80^{\circ} = 260^{\circ}$$

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\angle D = 360^{\circ} - (\angle A + \angle B + \angle C)$$

= 360°-260°

 $= 100^{\circ}$

In a quadrilateral ABCD, \angle D is equal to 150° and \angle A = \angle B = \angle C. Find \angle A, \angle B and \angle C.

Solution:

Measure of \angle D = 150°

Let
$$\angle A = \angle B = \angle C = x^{\circ}$$

Sum of the angles of the quadrilateral is 360°.

$$\Rightarrow$$
 x° +x° +x° +150° = 360°

$$\Rightarrow$$
 3x° +150° = 360°

$$\Rightarrow$$
 3x° = 360° -150° = 210°

$$x = \frac{210^{\circ}}{3} = 70^{\circ}$$

$$\therefore \angle A = 70^{\circ}, \angle B = 70^{\circ} \text{ and } \angle C = 70^{\circ}.$$

The angles of a quadrilateral are in the ratio 1:2:3:4. What are the measures of the four angles?

Solution:

Given the ratio of the angles of a quadrilateral = 1:2:3:4

Therefore, let the angles of the quadrilateral be x, 2x, 3x and 4x.

The sum of the angles of a quadrilateral is 360°.

$$\Rightarrow$$
 x+2x+3x+4x = 360°

$$\Rightarrow$$
 x = 36°

$$\Rightarrow$$
 2x = 2 × 36° = 72°

$$\Rightarrow$$
 3x = 3 × 36° = 108°

$$\Rightarrow$$
 4x = 4 × 36° = 144°

:. The measures of the four angles are 36°, 72°, 108° and 144°.

The In a quadrilateral

- (i) which of them have their diagonals bisecting each other?
- (ii) which of them have their diagonals perpendicular to each other?
- (iii) which of them have equal diagonals?

Solution:

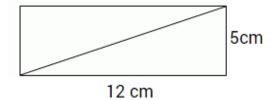
Diagonals bisect each other in

- a) parallelogram
- b) rhombus
- c) rectangle
- d) Square
- e) Kite
- (ii) Diagonals are perpendicular in
- a) rhombus
- b) Square
- c) Kite
- (iii) Diagonals are equal to each other in
- a) rectangle.
- b) square

Adjacent sides of a rectangle are in the ratio 5: 12, if the perimeter of the rectangle is 34cm, find the length of the diagonal.

Solution:

Given the adjacent sides of a rectangle are in the ratio 5:12.


Therefore let the sides be 5x and 12x.

Then 5x + 12x + 5x + 12x = 34

$$34x = 34$$

$$x = 1cm$$

Hence the sides are 12cm and 5cm.

The length of the diagonal = $\sqrt{(5^2 + 12^2)}$) (In a right angled triangle applying Pythagoras theorem)

$$=\sqrt{(25 + 144)}$$

$$= \sqrt{169} = 13$$
cm.

Therefore the length of the diagonal is 13cm.

The opposite angles of a parallelogram are $(3x + 5)^0$ and $(61 - x)^0$. Find the measure of four angles.

Solution:

$$(3x + 5) = (61 - x)$$
 (Opposite angles of a parallelogram are equal)
 $3x + x = 61 - 5$
 $4x = 56^{\circ}$
 $x = \frac{56^{\circ}}{4}$
 $x = 14^{\circ}$

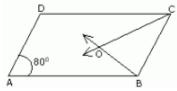
$$3x + 5 = 3(14) + 5 = 42 + 5 = 47^{\circ}$$

 $61 - x = 61 - 14 = 47^{\circ}$

Angle adjacent to one of the above angle = $180^{\circ} - 47^{\circ}$ = 133° (Sum of adjacent angles in a parallelogram is 180°)

Fourth angle = 133° (Opposite angles of a parallelogram are equal)

Therefore the four angles in a parallelogram are 47°, 133°, 47° and 133°


ABCD is a ||gm with \angle A = 80 0 . The internal bisectors of \angle B and \angle C meet at O. Find the measure of the three angles of \triangle BCO.

Solution:

 \angle C = \angle A (Opposite angles of a ||gm are equal)

$$\angle$$
 C = 800 (Given \angle C = 80⁰)

$$\angle OCB = \frac{1}{2} \angle c = \frac{1}{2} \times 80 = 40^{0}$$

 \angle B = 180⁰ - \angle A (Sum of interior angles on the same side of the transversal is 180⁰)

$$= 180^{0} - 80^{0}$$

$$= 100^{0}$$

$$\angle$$
 CBO = $\frac{1}{2} \angle$ B = $\frac{1}{2} \times 100^{\circ}$ = $50^{\circ} \angle$ BOC = 180° – (\angle OBC + \angle CBO) (Angle sum of a Δ) = 180° – (40° + 50°) = 180° - 90° = 90°

∴ The Three angles of the triangle BCO namely \angle OCB, \angle CBO, \angle BOC are 40 0 , 50 0 and 900 respectively.

Question 9

Find the measure of all four angles of a parallelogram whose consecutive angles are in the ratio 1 : 3.

Solution:

Given consecutive angles of a parallelogram are in the ratio 1:3

Therefore, the two consecutive angles be x and 3x.

 $x + 3x = 180^{\circ}$ (sum of the interior angles on the same side of the transversal is 180°)

$$4x = 180^{0}$$

$$x = 45^{\circ}$$

Therefore the two consecutive angles are 45° and $3(45^{\circ}) = 135^{\circ}$.

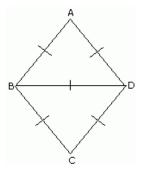
Since the opposite angles of a parallelogram are equal. The measures of all four angles of a parallelogram are 45° , 45° , 135° and 135° .

A diagonal and a side of a rhombus are of equal length. Find the measure of the angles of the rhombus.

Solution:

Let ABCD be the rhombus.

$$AB = BC = DC = DA$$
 (sides of a rhombus are equal)


Since in Δ ABD all the sides are equal. Δ ABD is an equilateral Δ .

Similarly Δ BCD is also an equilateral.

$$\therefore \angle B = \angle ABD + \angle DDC = 60^{0} + 60^{0} = 120^{0}$$

and
$$\angle D = \angle ADB + \angle CDB = 60^{0} + 60^{0} = 120^{0}$$

 \therefore The angles of the rhombus are 60°, 120°, 60° and 120°.

